β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice
نویسندگان
چکیده
Thoracic aortic dissection (TAD) is a catastrophic disease with high mortality and morbidity, characterized by fragmentation of elastin and loss of smooth muscle cells. However, the underlying pathological mechanisms of this disease remain elusive because there are no appropriate animal models, limiting discovery of effective therapeutic strategies. We treated mice on C57BL/6 and FVB genetic backgrounds with β-aminopropionitrile monofumarate (BAPN), an irreversible inhibitor of lysyl oxidase, for 4 wk, followed by angiotensin II (Ang II) infusion for 24 h. We found that the BAPN plus Ang II treatment induced formation of aortic dissections in 100% of mice on both genetic backgrounds. BAPN without Ang II caused dissections in few FVB mice, but caused 87% of C57BL/6 mice to develop TAD, with 37% dying from rupture of the aortic dissection. Moreover, a lower dose of BAPN induced TAD formation and rupture earlier with fewer effects on body weight. Therefore, we have generated a reliable and convenient TAD model in C57BL/6 mice for studying the pathological process and exploring therapeutic targets of TAD.
منابع مشابه
Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection.
BACKGROUND Acute aortic dissection (AAD) is a life-threatening vascular disease without effective pharmaceutical therapy. Matrix metalloproteinases (MMPs) are implicated in the development of chronic vascular diseases including aneurysm, but the key effectors and mechanism of action remain unknown. To define further the role of MMPs in AAD, we screened circulating MMPs in AAD patients, and then...
متن کاملMechanical stretch‐induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection
Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role ...
متن کاملHypoxia-Inducible Factor-1α in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report.
OBJECTIVE The purpose of this study was to determine the role of smooth muscle cell-derived hypoxia-inducible factor-1α (Hif-1α) in the pathogenesis of aortic aneurysms. APPROACH AND RESULTS Control mice and smooth muscle cell-specific hypoxia-inducible factor-1α-deficient mice were infused with β-aminopropionitrile for 2 weeks and angiotensin II for 6 weeks to induce aortic aneurysm formatio...
متن کاملThe role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms.
Abdominal aortic aneurysms (AAAs) are a major cause of morbidity and mortality in the United States today. We employed a model for AAA development using apolipoprotein E knock out mice fed a high-fat diet and treated with ANG II and β-aminopropionitrile (β-APN) for 4 wk. ANG II induces hypertension and atherosclerotic disease, whereas β-APN inhibits the activity of the lysyl oxidase/ lysyl oxid...
متن کاملPharmacologically induced thoracic and abdominal aortic aneurysms in mice.
Aortic aneurysms are common among the elderly population. A large majority of aortic aneurysms are located at two distinct aneurysm-prone regions, the abdominal aorta and thoracic aorta involving the ascending aorta. In this study, we combined two factors that are associated with human aortic aneurysms, hypertension and degeneration of elastic lamina, to induce an aortic aneurysm in mice. Roles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016